#### Fill in the circle for the correct answer.

1. Which shows the shaded part of the fraction bar as the product of a whole number and a unit fraction?

| 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|----|----|----|----|----|----|----|----|----|----|----|----|
| 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |

 $\bigcirc 4 = 4 \cdot \frac{1}{12}$ 

 $\frac{8}{12} = 8 \cdot \frac{1}{12}$ 

(B)  $\frac{4}{12} = 4 \cdot \frac{4}{12}$ 

①  $\frac{8}{12} = 8 \cdot \frac{8}{12}$ 

#### Solve.

Show your work.

**Date** 

- 2. Kyle grates  $\frac{4}{8}$  pound of cheese for enchiladas. He grates  $\frac{2}{8}$  pound of cheese for tacos. Which equation can be used to find how much cheese Kyle grates in all?
  - **6**  $c = \frac{4}{8} + \frac{2}{8}$ ;  $\frac{6}{8}$  pound

(H)  $c = \frac{4}{9} + \frac{2}{9}$ ;  $\frac{6}{16}$  pound

 $\bigcirc$   $c = \frac{4}{9} - \frac{2}{9}$ ;  $\frac{2}{9}$  pound

- $\& c = \frac{4}{9} \frac{2}{9}; \frac{2}{16} \text{ pound}$
- 3. Sam rides his bike  $\frac{6}{10}$  mile to the mall. This is  $\frac{4}{10}$  mile farther than he rides to the gym. Which equation can be used to find how far Sam rides to the gym?
  - (A)  $\frac{6}{10} r = \frac{4}{10}$ ;  $\frac{2}{20}$  mile
- ©  $r = \frac{6}{10} + \frac{4}{10}$ ;  $\frac{10}{20}$  mile
- **B**  $\frac{6}{10} r = \frac{4}{10}$ ;  $\frac{2}{10}$  mile
- ①  $r = \frac{6}{10} + \frac{4}{10}$ ;  $\frac{10}{10}$  or 1 mile
- **4.** Mehira uses  $\frac{3}{4}$  yard of fabric to cover a chair seat. Which equation can be used to find how many yards she needs to cover 4 chair seats?

  - (F)  $f = 4 + \frac{3}{4}$ ;  $\frac{7}{4}$  yards or  $1\frac{3}{4}$  yards (H)  $f = 4 \cdot \frac{3}{4}$ ;  $\frac{7}{4}$  yards or  $1\frac{3}{4}$  yards
  - **©**  $f = 4 + \frac{3}{4}$ ;  $4\frac{3}{4}$  yards

 $f = 4 \cdot \frac{3}{4}$ ;  $\frac{12}{4}$  yards or 3 yards

## Which fraction completes the equation?

5. 
$$\frac{5}{6} = \frac{2}{6} + \frac{2}{6} + \square$$

- $\frac{1}{6}$
- $\mathbb{B}^{\frac{2}{6}}$
- 6.  $\frac{8}{8} = \frac{5}{8} + \square$ 
  - $\mathbb{F} \frac{1}{8}$
  - $\bigcirc$   $\frac{2}{8}$
- 7.  $\frac{9}{12} = \frac{5}{12} + \square$ 
  - (A)  $\frac{3}{12}$

- $\bigcirc \frac{3}{6}$
- ①  $\frac{4}{6}$
- $\mathbb{K}$   $\frac{5}{8}$

$$^{\circ}$$
  $\frac{5}{12}$ 

①  $\frac{7}{12}$ 

#### Which shows the fraction as a product of a whole number and a unit fraction?

8. 
$$\frac{9}{10} = 10$$

**(F)** 
$$9 \cdot \frac{1}{10}$$

(G)  $9 \cdot \frac{9}{10}$ 

$$\oplus$$
 10 ·  $\frac{1}{10}$ 

$$\mathbb{K} \ 10 \cdot \frac{9}{10}$$

9. 
$$\frac{2}{5} =$$

(B) 
$$5 \cdot \frac{1}{5}$$

© 
$$2 \cdot \frac{2}{5}$$

$$0 \cdot \frac{1}{5}$$

## Multiply.

**10.** 
$$9 \cdot \frac{1}{8} = \blacksquare$$

**12.**  $5 \cdot \frac{3}{5} = \square$ 

(F) 
$$\frac{8}{8}$$
 or 1

**6** 
$$\frac{9}{8}$$
 or  $1\frac{1}{8}$ 

(F)  $\frac{15}{3}$  or 5

$$\mathbb{K} \frac{11}{8} \text{ or } 1\frac{3}{8}$$

**11.** 
$$4 \times \frac{1}{2} = \square$$

**A** 
$$\frac{8}{2}$$
 or 4

(B) 
$$\frac{5}{2}$$
 or  $2\frac{1}{2}$ 

$$\bigcirc \frac{4}{2}$$
 or 2

**13.** 
$$7 \cdot \frac{3}{4} =$$

$$\oplus \frac{10}{3}$$
 or  $3\frac{1}{3}$ 

$$\oplus \frac{10}{3}$$
 or  $3\frac{1}{3}$ 

$$\&$$
  $\frac{8}{5}$  or  $1\frac{3}{5}$ 

(A) 
$$\frac{10}{4}$$
 or  $2\frac{2}{4}$  (C)  $\frac{21}{4}$  or  $5\frac{1}{4}$ 

© 
$$\frac{21}{4}$$
 or  $5\frac{2}{4}$ 

(B) 
$$\frac{11}{3}$$
 or  $3\frac{2}{3}$  (D)  $\frac{28}{3}$  or  $9\frac{1}{3}$ 

① 
$$\frac{28}{3}$$
 or  $9\frac{1}{3}$ 

**G**  $\frac{15}{5}$  or 3

#### Add or subtract.

# **14.** $\frac{4}{10} + \frac{3}{10} = \square$

- (F)  $\frac{1}{20}$
- **©**  $\frac{7}{20}$
- $\oplus \frac{1}{10}$
- $\frac{7}{10}$

17. 
$$\frac{5}{8} - \frac{4}{8} = \square$$

- **A**  $\frac{9}{16}$
- $\mathbb{B}^{\frac{2}{8}}$
- ①  $\frac{1}{16}$

20. 
$$2\frac{7}{10} + 3\frac{9}{10}$$

- (F)  $5\frac{4}{10}$
- **©**  $5\frac{6}{10}$
- $\oplus$  6 $\frac{4}{10}$
- $6\frac{6}{10}$

**15.** 
$$\frac{3}{4} - \frac{2}{4} = \square$$

- $\textcircled{A} \frac{1}{8}$
- $\mathbf{B} \frac{1}{2}$
- $\mathbb{C}^{\frac{2}{4}}$
- ①  $\frac{5}{8}$

**18.** 
$$9\frac{7}{12} - 6\frac{5}{12} = \square$$

- (F)  $3\frac{10}{12}$
- **G**  $3\frac{2}{12}$
- $\oplus 2\frac{10}{12}$

21. 
$$7\frac{2}{5}$$
  $-2\frac{4}{5}$ 

- (A)  $4\frac{2}{5}$
- **B**  $4\frac{3}{5}$
- ©  $5\frac{2}{5}$
- ①  $5\frac{3}{5}$

**16.** 
$$\frac{8}{5} + \frac{4}{5} = \blacksquare$$

- **(F)**  $\frac{12}{5}$  or  $2\frac{2}{5}$
- **©**  $\frac{12}{10}$  or  $1\frac{2}{10}$
- $\oplus \frac{4}{5}$

**19.** 
$$4\frac{1}{6} + 2\frac{5}{6} =$$

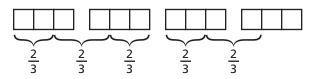
- A 7
- **B** 6
- ©  $2\frac{4}{6}$
- ①  $1\frac{1}{6}$

22. 
$$5$$
  $-3\frac{5}{8}$ 

- **1** $\frac{3}{8}$
- **©** 2
- (H)  $2\frac{3}{8}$
- **(K)** 3

## Solve.

Show your work.

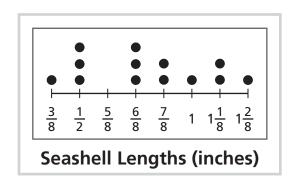

- 23. Erin measures  $\frac{3}{4}$  inch of snow. It snows some more. Now there are  $3\frac{1}{4}$  inches of snow. How many more inches of snow fell?
  - $\triangle$   $3\frac{2}{4}$  inches

 $\bigcirc$  2 $\frac{2}{4}$  inches

B  $3\frac{1}{4}$  inches

①  $2\frac{1}{4}$  inches

24. Jorge volunteers  $\frac{2}{3}$  hour at the animal shelter on Wednesday. He volunteers 5 times as many hours on Saturday. How many hours does Jorge volunteer on Saturday?




 $\bigcirc$  2 $\frac{2}{3}$  hours

 $\oplus$   $3\frac{2}{3}$  hours

 $\bigcirc$  3 $\frac{1}{3}$  hours

- $\bigcirc K$   $4\frac{1}{3}$  hours
- **25.** The line plot shows the lengths of some seashells Colton collected at the beach.



Colton wants to glue some shells along a 4-inch edge of a picture frame. Which combination of shells would **not** work?

- (A) all of the  $\frac{6}{8}$ -inch and  $\frac{7}{8}$ -inch shells
- B one  $\frac{6}{8}$ -inch shell, and all of the 1-inch and  $1\frac{1}{8}$ -inch shells
- © two  $\frac{1}{2}$ -inch shells, and all of the  $\frac{7}{8}$ -inch and  $1\frac{2}{8}$ -inch shells
- $\bullet$  two  $\frac{6}{8}$ -inch shells and all of the  $\frac{3}{8}$ -inch and  $1\frac{1}{8}$ -inch shells